Homogeneous Polynomials and the Minimal Polynomial of COS $(2\pi / n)$

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The constant term of the minimal polynomial of cos(2pi/n) over Q

These groups are isomorphic to the free product of two finite cyclic groups of orders  and q. The first few Hecke groups are H(λ) = = PSL(,Z) (the modular group), H(λ) = H( √ ), H(λ) = H( + √   ), and H(λ) = H( √ ). It is clear from the above that H(λq) ⊂ PSL(,Z[λq]), but unlike in the modular group case (the case q = ), the inclusion is strict and the index [PSL(,Z[λq]) :H(λq)] i...

متن کامل

Taylor and minimal resolutions of homogeneous polynomial ideals

In the theory of monomial ideals of a polynomial ring S over a field k, it is convenient that for each such ideal I there is a standard free resolution, so called Taylor resolution, that can be canonically constructed from the minimal system of monomial generators of I (see [7], p.439 and section 2). On the other hand no construction of a minimal resolution for an arbitrary monomial ideal has b...

متن کامل

Algebraic adjoint of the polynomials-polynomial matrix multiplication

This paper deals with a result concerning the algebraic dual of the linear mapping defined by the multiplication of polynomial vectors by a given polynomial matrix over a commutative field

متن کامل

extensions of some polynomial inequalities to the polar derivative

توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی

15 صفحه اول

Finiteness of integrable n-dimensional homogeneous polynomial potentials

We consider natural Hamiltonian systems of n > 1 degrees of freedom with polynomial homogeneous potentials of degree k. We show that under a genericity assumption, for a fixed k, at most only a finite number of such systems is integrable. We also explain how to find explicit forms of these integrable potentials for small k.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Missouri Journal of Mathematical Sciences

سال: 2003

ISSN: 0899-6180

DOI: 10.35834/2003/1501014